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Under the conditions of developed fluidization there are intensive
fluctuations both in the fluidizing medium and in the dispersed solid
phase. These motions have a decisive effect on the rheological pro-
perties of the fluidized bed, and on the chemical reactions and trans-
port processes taking place in it [1]. Thus, for example, in the exper-
iments of Wicke and Fetting [2], who investigated the heat transfer
between a fluidized bed and the walls of 4 heated container, the ef-
fective heat transfer coefficient was found to be higher by an order of
magnitude than the corresponding result for a fluidized bed held down
by a wire grid so that the random motion of the solid phase was re-
duced, it is clear that the initial stage of any study of the structure of
the fluidized bed as a whole, and of the subsequent development of
any model, must involve an investigation of local structural proper-
ties, including the above fluctuations,

The time variation of the individual particle velocities is due to
two different causes, First, there is the interaction between the par-
ticles both through direct collisions and through the medium of the
liquid phase, and, secondly, there is the interaction with the viscous
fluid, These two factors are not independent, so that the set of fluid-
ized particles has certain features characteristic for both a dense gas,
with a potential intramolecular interaction, and a set of particles
executing Brownian motion in a continuous medium.

Any detailed statistical theory of a system of fluidized parricles
must be based on a representation of the random particle motions in
the medium by a stochastic process with some definite properties (see,
for example, [3-4]). Ideally, this theory should lead to the formula-
tion of a transport equation which, in view of the above properties of
the system, should have some of the features of both the usual Boltzman
transport equation and the Fokker-Planck equation. The solution of this
final equation is, of course, more difficult than the solution of the
Boltzman or Fokker-Planck equations, Moreover, there is also the
problem of applying this equation to different special cases. An alter-
native approach is to develop an approximate, but still sufficiently ef-
fective, theory of the local properties of the fluidized bed, which
would combine relative simplicity in application with sufficient rigor
and generality, This kind of theory is put forward in the present paper,
The conclusions to which it leads are in good qualitative agreement
with experiment.

§1. MODEL OF A FLUIDIZED BED

Consider the volume of a fluidized bed containing a
very large number of particles, so that its macroscop-
ic characteristics can be regarded as independent of the
coordinates. Moreover, let us confine our attention to
times t for which these parameters remain practically
constant. If the linear dimensions of the chosen volume
are much greater than the characteristic spatial scale
of the microstructure of the bed, and the time t is much
longer than the characteristic time scale for internal
motions, then, by analogy with kinetic theory, the
fluidized bed is said to be in local equilibrium. If the
macroscopic parameters are entirely independent of
the coordinates and of time, the system is said to be in
a state of equilibrium. Only such states will be dis-
cussed below.

If we neglect fluctuational motion of the two phases,
the state of the fluidized bed can be described by spec-
ifying a single variable, for example, the particle

concentration gy in the layer. The other macroscopic
variables such as, for example, the mean velocity u
of the liquid phase or the filtration velocity u®=

= goUp = (1 ~ pyug are functions of py and of the mate-~
rial constants, Let f = f(py,up) be the interaction force
between the phases per unit volume of the fluidized bed.

i
ol AT
oo !

ar W W Z7 v
Fig. 1

In the set of coordinates in which the mean velocity of
the solid phase is zero, the velocity u is antiparallel
to the force of gravity and satisfies the equation
f oo o) =0 (dy — dy) 2, (1. 1)
where g is the gravitational acceleration, and d; and
d, are the densities of the liquid and of the particle ma-
terial, respectively. We note that the force f repre-
sents the true resistance of the fluidized bed to the
flow of the fluidizing medium and, therefore, should be
determined, for example, from the observed pressure
drop in the fluidized bed.

In reality, the particles in a fluidized bed are in a state of random
motion characterized by a continuous velocity distribution, and the
true local values of p and u differ from the mean values py and uy
about which they fluctuate [1]. The disordered motion of the individ-
ual particles, which is similar to the motion of molecules in a gas,
has frequently been observed experimentally (see, for example, the
review in [5]). The space scale of such motions is, of course, of the
order of the mean free path A of the particles between collisions, while
the time scale 7 is of the order of A (w®)™! where w® is the mean value
of the modulus of the velocity of this motion, There is considerable
experimental evidence that additional vertical fluctuations are super-
imposed on these small-scale and, in the first approximation, isotrop-
ic motions, These additional {luctuations have associated spatial A and
time T scales which are much greater than A and 7. Figure 1 shows
the modulus of the vertical component of the total fluctuation velo-~
city of the particles as a function of time, This curve was obtained by
Toomey and johnstone [6] who investigated the behavior of glass balls
=~ 0, 38 mm in diameter in air. It is clear from Fig, 1 that, in addi-
tion to smali-scale fluctuations, for which the time scale T is of the
order of a small fraction of a second, there is also a large-scale fluc-
tuation with a time scale T ~ 1 sec (the dashed line in Fig. 1 corre-
sponds to the filtration velocity for air). The presence in the fluidized
bed of relatively large groups of particles undergoing disordered verti-
cal motion, which are phenomenologically analogous to eddies in a
turbulent fluid, has also been noted by Bondareva and Todes [7] who
introduced the concept of the effective displacement length which is
necessary for these groups to decay, According to their estimates, this
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length is of the order of a few centimeters. Similar ard very detailed
data obtained by radicactive tracer techniques were recently reported
in [8, 91. The well-defined alternation of fast and slow motions of
groups of particles in the vertical direction was also noted in [10] and
in many other papers [1],

Analysis of experimental results suggests the fol-
lowing picture of internal motions in a fluidized bed. .
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The individual particles execute random isotropic
fine-scale motion which differs from the motion of gas
molecules only in that the velocity of each particle may
change not only as a result of collisions between the
particles, but also as a result of viscous dissipation of
their energy. This type of motion leads to fluctuations
of the various variable parameters characterizing the
state about their mean values, including fluctuations in
p or the particle-number density n = p/v°, where v° is
the volume of a particle.

It is natural to try to relate the observed large-
scale vertical motion of the particles with fluctuations
in p or n. In fact, the resistance f offered by the par-
ticles to the flow of the fluidizing medium will vary
within the limits of the volume of the fluidized bed oc-
cupied by the fluctuations, and the balance of forces
described by Eq. (1.1) will be violated. As a resuit,
the particles participating in the fluctuations will be ac~
celerated either upward or downward under the combined
action of the force f and the gravitational force.

Fig. 3

Duringthe motion and decay of the fluctuational forma-
tions, the energy assumed by the particles participating
in the large-scale fluctuational motion will be redis-
tributed among the various degrees of freedom of the
small-scale random motion, both through collisions
and through indirect interactions between the particles
in the random pressure field of the liquid phase. This
compensates the viscous energy dissipation of the
small-scalé fluctuational motions. In other words,
there is an energy flux E from the mean motion of the
liquid phase to the large-scale vertical fluctuations
and then to the small-scale motion. In the quasi-sta-
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-tionary state this flux is equal to the power W dissi-
-pated into heat as a result of viscous friction. The
quasi-stationarity condition

E=W (1.2)

—.occupies a central position in the theory given below

“and shows that the statistical characteristics of a

“system of particles can vary only as a result of a
change in the macroscopic parameters which take place
in a time which is much greater than the characteristic
times T and T. It is clear that the equilibrium, or the
local equilibrium, defined above is necessarily quasi-
stationary. We note that under the conditions of devel-
oped turbulent fluidization, or if the fluidizing medium
is poorly distributed in the bed, there is an additional
energy flux E' due to the capture of the particles by
eddies or fluctuations in the liquid phase. Bubbles
rising in the bed in the case of inhomogeneous fluidiza-
tion may play an analogous role. To take these pheno-
mena into account we must introduce a random turbu-
lent field which is unknown a priori, we must consider

* the motion of the bubbles, etc, All this complicates
the problem considerably. We shall therefore ignore
these phenomena in the present paper, and this can
obviously lead to errors when the theory is applied to
highly turbulent fluidization.
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When the quasi-stationarity condition given by Eq.
(1.2) is satisfied, the true ensemble of fluidized par-
ticles undergoing velocity changes between collisions
and continuously dissipating their energy is statisti-
cally equivalent to a fictitious ensemble of particles
whose velocities change only as a result of collisions.
This hypothesis corresponds to a fact which is well
known in kinetic theory, namely, that the parameters
which characterize the statistics of equilibrium states
are independent of the method whereby the state is es-
tablished and of the specific form of interaction be-
tween the particles.

We shall assume in addition that

<

where 7° is the relaxation time for a particle moving
in a viscous fluid. When Eq. (1.3) is satisfied, the
mean free path is, in fact, independent of the interac-
tion between the particles and the medium. It is clear
that the above condition is satisfied in many cases
which are of interest in practice. Exceptions to this
occur where either the liquid phase is highly viscous
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or the particles are very small. When Eq. (1.3) is
satisfied we can analyze transport processes in the
fluidized bed system as in the elementary kinetic the-
ory of gases, i.e,, we can use the idea of an equivalent.
ensemble. Strictly speaking, this equivalence princi-
pleneed not be introduced, and the statistics of the
fluidized particles can be developed independently by
analogy with the Gibbs distributions using Eqs. (1.2)
and (1. 3).

If P(wy) is the particle-velocity distribution func-
tion for the small-scale motion normalized to the par-
ticle-number density, and Q(6w) is the probability that
a particle will enter a fluctuation which corresponds
to a velocity 0w of large-scale motion, then the mean
number of particles with velocities in the range
{dwi} d(éw) is given by

dn = P (07) Q () {dwi)d (u5), by = dwdyy, (L.4)

where the X ~ x; axis lies in the direction of the filtra-
tion velocity.

Thus, local fluctuational motions of the particles in
the fluidized bed have a very complicated character.
They form a superposition of uncorrelated small-scale
isotropic motions similar to the thermal motion, and
large-scale vertical fluctuations which introduce an
anisotropy into the total distribution given by Eq. (1.4).

§2. FORMAL STATISTICS OF EQUILIBRIUM STATES

1t follows from the above account that the basic hypo-
theses are the assumed isotropy of the equilibrium dis-
tribution P(w;j) and the assumed independence of the
number of particles with a given velocity w on the inter-
action between the particles. Together with the quasi-
stationarity condition (1. 2), these hypotheses lead to
the following functional equation:

P (wi®) P (ws?) = P (ws®) P (wy?),
W L wy? = wy? 4w,

where the subscripts represent the velocities of two
different particles before and after interaction.
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The solution of this problem leads to the Maxwellian
distribution

A 2
dp(wi)sn(_z’ﬁ—e) exp(——%—){dwi}, (2.1)
where m is the particle mass and 6 is a scalar quan-
tity which depends on the macroscopic parameters of
the fluidized layer and can be interpreted as the ef-

fective statistical "temperature” of the system of flu-
idized particles.

Fig. 6

We note that, in addition to translational degrees of freedom, each
particle will also have rotational degrees of freedom. The rotation
of individual particles has been observed experimentally [10]. When
the radius of the particles is sufficiently small, one would expect that
the dissipation of rotational energy occurs much more rapidly than
the excitation of these degrees of freedomn, so that the mean energy
of translational motion is much greater than that of the rotational
motion (in other words, the effective rotation temperature is much
less than 6), Although the rotation of the particles can, in principle,
be taken into account by introducing the Eucken corrections [11],
this effect will not be raken into account here,

Using the equivalent ensemble hypothesis, and ap-
plying a standard procedure, it is quite easy to obtain
for the equilibrium state of the fluidized bed the same
results as for a gas. Thus, we can readily evaluate the
partition function

Z = 5 Vo™ (2m)’Y,

where Vy is the free volume (in the sense ofvan der
Waals) corresponding to N particles. The effective
Helmholtz free energy is then given by

¥ = —06InZ = —
—6N [In (Vo / N) + 3/, (InD + In 2oz m))].

The effective "entropy" S and the isotropic "pres-
sure" of the solid phase are, respectively, given by

S = —0¥)e0, p = —o¥/aV.

The relation between the total volume V occupied by
the N particles and Vy can most simply be established
by using the equation of state of the ensemble found
independently. For a dense gas of spherical particles
of radius @ we have [11]

pv(l —o¢) =86,

0 = (v, /V) = (n/n)" = (0/px)", (2.2)

where v = V/N is the specific volume of a particle, and
Vi, Ny, and px are the values of the corresponding pa-
rameters inthe closely packed state. Equation(2.2) is val~
id for pnot too small, in which case an individual particle
will not readily escape from the cell occupied by it. Ac-
cordingto [11]this equationis validfor 0.125p0, =0 = py.

If we determine p from Eq. (2. 2) and express it in
terms of the free energy, we obtain

V dV, 1

1 z
Vo =15 o0 Vo=V,

Using ¥ once again, we obtain the following ex~
pression for the entropy:
© 8 =N Bln (W — vtk 4

+3/5(In8 + In Qmm) + 1)] (2.3)
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From the results of Enskog [33] on the transport of
elastic spheres with delta-function interaction in dense
gases we have the following expressions for the shear
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viscosity 7, the bulk viscosity ¢, the self-diffusion co~
efficient (D) of the particles, and the transport of their
small-scale pulsational energy (y) which is the analog -
of the thermal conductivity:

n= 4PT]O (Y—l + 0.8 4 0.76 Y)v § = 4P"1°Y:
D = 4D°Y7, y = 4oy (Y14 1.2+ 0.75 V),

w2 o)

= 5 5 \wm

64a2 \
B 15
2 m & m’

V)= B —tm 2, (2.4)

1—o¢
where 71°, D°, v° are the values of the corresponding
coefficients at zero pressure p (in a diluted gas of the
same particles).

In the expression given by Eq. (2.4), cy is the ef-
fective "heat capacity" of a single particle at the
temperature 0.

The quantity Y is plotted as a function of p in Fig.
2a (for px = 0.74, which corresponds to hexagonal
close packing). The reduced coefficients 7*, etc.

7% = (4pne)”) are shown in Fig. 2b [11].

For values of p for which Eq. (2.2) is satisfied, the

function Y can be calculated from the same equation.

We note that the quantities n°, D°, ¥° are independent of the den-
sity of the gas, This is a well-known result in the kinetic theory. of
gases, and is explained by the fact that the reduction in the number
of particles passing through an element of area per unit time is exact-
ly compensated by the increase in the mean free path A as the pres-
sure is reduced. There is an analogous situation in a fluidized bed if
the inequality given by Eq. (1. 8) is satisfied,

For the probability of a small fluctuation 8p accom-
panied by a change 6 S in the entropy we have

dQ (8p) ~ exp (3 (8p)) d (8p). (2.5)
In particular, if we use Gibbs' first lemma for the re-
lative square of the fluctuation in the number of par-
ticles in a volume V of the fluidized bed, we obtain in
the usual way

GO =wlr =75

In deriving this result we have used the equation of
state in the form given by Eq. (2.2). The expression
given by Eq. (2.6) was derived in [12] on the basis of

(2.6)

the well-known Smoluchowski formula, but this is in-
correct because the latter formula is not valid for
very dense systems such as a fluidized bed.

§3. SMALL FLUCTUATIONS IN A SET OF FLUIDIZED
PARTICLES.

When the volume V is sufficiently large we can as-
sume that N & const,. in-accordance with Eq. (2.86).
We shall suppose that, as a result of fluctuations, the
mean distribution of particles in this volume, p = py =
const, has become p= g + ¢ (x,V,%,t). The form of
the function ¢ is restricted by the conditions

Sq;dV—-—-O.
v

— Po P Py — Po, (3.1)
Let us now introduce the quantities ¥ and o by the

formulas

vyt = { grav®,

vE

Vp = SqﬂdV,
v

where V¥ and V"~ are the regions of V in which ¢ is
positive and negative, respectively. Analysis of ar-
bitrary fluctuations in this system is very difficult

(for example, 68(¢) in Eq. (2.5) is, in general, a com-
plicated functional of ¢). To obtain approximate re-
sults we shall use the assumption that the fluctuations
are small. The state corresponding to different dis-
tributions p (x, y, 2z, t) with given intensity i corre-
sponds-to a change of entropy (as compared with the
undisturbed state p = pg) which can be written in the

form
88 =3 56 [nln(v"s—uv, /)] dV =

__3 CRYN ) ‘/S—Pl;/,)
_;T$a[pln(u w4y,

where we have used Eq. (2.3).
From Eq. (3.1) we have for small fluctuations

{— 2/36

S =~ — lepz—Q(Po, px) V. (8.2)

To obtain the probability of the disturbed state corresponding to a
given value of ¢ in accordance with Eq. (2.5), we must find its statis-
tical weight, i.e., introduce the measure of the set of functions ¢(x,
¥, z,t) for which the quantity ¢ lies in a given interval. Let us repre-
sent ¢ by the trigonometric polynomial

2niz 2njy 2nlz
Q= Z agi(t) COS‘ZTGOS Ty— cos I, ==

i3, 1
e 2am,z
= Na_(t 0s K7k
Z m (1) Hc L,
m k
M=MMM, zx==21Y 7. (3. 3)

We then have the Parseval equation

M
. LILL
vp— s Eamz(t)=v_’;__ (3.4)
: m

in these expressions Lx, Ly, Lz are the linear dimensions of the
volume V, 1 =i = M, 1=1=M,1=1= M,, and the vec-
tor m represents different combinations “of the subscripts i, j, and I,
It is readily seen that functions of the form given by Eq. (3. 3) auto-
matically satisfy the second condition in Eq, (3.1), Transforming from
VtoV , weshall write ¢’ = 0, on vt in the form
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M ) 2am z,* +
¢F = Y‘ am+ ([)H cos — Lka , Pt = (r*)?
sy . .

r
m
o + s i ot + .
Since o must be positive in V', we have ag = 0. It is also
readily shown that, since ot must be bounded, we have

Z”m+ (1) < Px— o

The quantities a;, (t) can be regarded as the coordinates of a
point in M-dimensional space, The possible values of a;';l define the
region of this space bounded by the hypessurfaces

Yoy =R Nam* =p—pu  ay" =0, (3.5)
where R+ is the maximum value of 1 (referred to the entire volume
V) which is defined below, The required measure can reasonably be
raken to be the volume of the spherical layer (r, r + dr) bounded by
the hypersurfaces (3. 5), This choice is dictated by the statistical homo-
geneity of the above space, i.e., the equivalence of different coeffi-
cients a,*;,, but it also follows from Eq. (3.4). It is readily seen that in-
stead of the volume of the spherical layer in the single quadrant oy =
= 0 we can take the volume of the layer bounded by the oM hyper-
planes:

My (=1 m=p, —po . (3.6)
In this expression the superscripts sy, can assume values between 0 and
1 independently of each other.

Consider to begin with a volume d+( bounded by the \-dimen-
sional spheres r and r + dr and two hyperplanes of the form (3, 8)
which are symmetric relative to the origin, We have

dQyp = Sy (r)dr = mMSM (r)dr,

where SA\'I is the area of the comesponding spherical zone, Sy is the
area of the entire hypersphere of radius r, and w,is, by definition,
equal to Sy¢/Syg This is illustrated by Fig, 3 which shows the above
region for M = 2. Lines 1 and 1' correspond to the symmetric hyper-
planes, and the circle R* corresponds to the hypersphere. The equi-
valent of Syp is the total length of the thick arc shown in the figure,
while the hatched areas are equivalent to the volume of the spherical
layer,

Let us now define in the space of the Fourier coefficients a unitary
transformation {a;]} - {b&} such that the coordinates of the points
of intersection of the perpendicular dropped onto the hyperplane from
the origin are bm+o =:bdm, (broken line in Fig, 3). To determine b we
shall use the symmerry of afy in Eq. (3.6). The coordinates of the
above point in the basis {a;’h} are then given by

g = £ M7 (0, — po) .
Hence, we find that
/ \one, 1
b= (3 (ap 1?) 2= 7z (e —P0)-

It is clear that, as M increases, the hyperplanes approach each
other without limit. The ratio of the area of the spherical zone to the
area of the entire sphere can be shown to be [13]

@y (T) = erf (—E’%&), M>1.

Let us now introduce two new symmetric hyperplanes (2 and 2' in
Fig. 3), and consider their intersection with the figure bounded by the
hypersphere r and the original hyperplanes, Since for M > 1, these
hyperplanes can be as close to each other as desired, and we can as-
sume that the area of the M-dimensional annular zone is proportional -
to the area of the (M — 1)-dimensional sphere of radius r, so that
we can repeat the above analysis for the (M ~ 1)-dimensional sphere.
We thus find by induction that

Oyf = Oy gy = - =T Wy, M—n>y.

Hence, apart from unimportant constant factors (we recall that
Sy ~ M1y the required measure in vt is given b
M ’ . g

X (r) [r erf (%’_—p& )]M, 8. 7)

2

where x+(r) is a function of r which is independent of M,
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A similar analysis is valid for ¢~ in the region V™. The correspond-
ing measure is then again given by Eq. (3.7) except that p, ~ p; is
replaced by py.

From the above results we find that the probabilities dQ¥ (1) for the
quantities ri_to lie in the interval (1, r + dr) are given by

dQ* (1) ~ 1 (7) Lr erf (%—g&):‘w exp <_ _98_ Nﬂ) dr,

4Q" ()~ 1 () [rert (< 1" exn( = L re)ar,

We must now find M and R, The Fourier coefficients apy (t) cor-
respond to different degrees of freedom of the set of functions ¢ in
Eq. (3.3). Suppose that the particles move in groups of N particles
per group. This means that by specifying the function ¢ we are also
specifying N/N vector functions of time defining the position of
these groups in the volume V., Instead of these functions we can intre-
duce the set of independent scalar coefficients am(t) and, since they
are independent, we have N\ = 3N/N,.

In the limit of zero pressure we have Ny = 1, i.e. each particle
behaves independently of other particles. In a dense system this is
no longer true, since a virtual displacement of a given particle gives
rise to a regrouping and a correlated displacement of neighboring par-
ticles. The limiting case when the specification of the motion of a
single particle completely defines the motion of all other particles in
a given group occurs in the case of close packing of the particles in
this group, We shall suppose that close packing is achieved in a vol-
ume V' «V of the fluidized bed in which the mean number of parti-
cles is N" = V'/v = (p, / v9)V'. In the closely-packed state this vol-
ume will contain Ny = (p, / po)N' particles, and hence it follows that

0N = pgl (0 — Do)No .

We can then show that for closely packed groups of particles

. (P2 — pof P 1—7s3
dg (Vo) ~ exp {— aiVo) d.Vo, o= T;HTB— .
From this distribution we have the following expressions for the

averages {N,> and {M) :

1+a 1

Noy=—74"=7>
M) = 3Nwe® (— Ei o SN e a9
(M) =3Nae® (— 1(—°l))~<NO>=3GN, (3.9)

This expression for (M) should be used in all calculations involv-
ing the representation of the function ¢ by Eq. (3, 3). Figure 4 shows
a plot of Q as given by Eq. (3.2) and G as given by Eq. (3.9) as func-
tions of py for p» = 0,6, It is clear from this figure that G is appre-
ciably different from unity only in a small neighborhood of px.
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The maximum values of R" and R” are reached when the region
V™ of the volume V is completely free of particles, and v is filled
with closely packed particles. Using Eqgs. (3.1) and (3, 4) we can show
that

y
R* = max {r*} = (32> (o, —pop) ",
*

— 1
R =max{r}= (8 R hnd L N 902) /'. ’ (3.10)

P
Consider the integral
R+

d —_ M)
Tt~ S xt(r) r¥ [r erf (—P*—V—i-f—o)] X
5 .
X 0Xp (— %er)dr '

where R is given by Eq. (3.10).

The integral reaches a maximum at r = rj, where

Py — Po x
VE
Gt e (555)]

There is an analogous equation for ry, except that p, ~ pq isre-
placed by py. The asymptotic representation of the integrals J; for
large N can be obtained by the Laplace method:

G
(=12 [1 —

x exp (— (3.11)

rEY = (min {r, *, REY,

D =y, D

In practically the entire region of variation of p,we have r‘t <
< R¥, This supports the validity of the theory of small fluctuanons
used above.

Neglectmg the difference between G and umty, and
between 1y, and 12G/Q, we finally have

)y = Ye(rhy =2 3Q7, (3.12)

We shall use this expression in the calculations below.

84. EFFECTIVE TEMPERATURE, INTENSITY OF
FLUCTUATIONS, AND TRANSPORT COEFFICIENTS

We shall use only the first two terms in the expan-
sions of the different functions in terms of ¢ in the
neighborhood of py. In fact, many important functions
are very dependent on py and, therefore, the results
which we shall obtain below will be valid only to with-
in an order of magnitude.

To be specific, we shall suppose that the forces
acting on the particles undergoing the fluctuational
motion can be satisfactorily described by the semi-
empirical formula [14],

Ag' 3.75
T84 0.6(AgEBYE
R — 2uga A 8ga® d, —d; (4.1)
T T et dy s

where R and A are the Reynolds and Archimedes num-
bers, and v, is the kinematic viscosity of the liquid
phase. In the limiting case of very small Archimedes
numbers, this formula is confirmed independently by
theoretical considerations [15]. It follows from Eq.
(4. 1) that the additional force F(¢) acting on a parti-
cle in its large-scale motion is given by

F (¢) = bapoa Ky (du — dw) + K,'u®l,
Ky =K (py, X), K (p, X) = e-85(1 + 235X},

‘KOI — —(i%K(p’ X) lp=ﬂus (4.2)

where we have used the new dimensionless parameter

X = 0.0334%: ,

The quantities su and Sw represent the changes in the velocities of
the liquid and solid phases within the fluctuations and, in general, are
time-dependent. The change du can be approximately estimated by
considering the filtration of a liquid in a porous medium with porosity
1 ~ p, and containing a moving inhomogeneity with porosity 1 - p; —
- @, This can be done by using, for example, the equations of [16].
We shall assume, for simplicity, that the characteristic time for an
appreciable change in the flow of the liquid near the inhomogeneity
is considerably greater than the mean lifetime T of the inhomogeneity.
Hence, - assuming that the flow rate of the liquid phase is constant,
we have

(4.3)

Su= uo (1—po)t @, (4. 4)

In the opposite limiting case, it is sufficient to consider stationary
filtration, If we use the subscripts 0 and 1 to refer to the exterior and
interior of the inhomogeneity, we can write down equations for the
pressure in the liquid and for the rate of filtration in rerms of pressure
gradients in the form
g Op;

ad = =

Ap; =0, B, or B(p ~—~PK(9, Xy,

We shall seek the solution of the Laplace equations in the form

po=(—Ro+ Br3)((ug—dw)r), pi=—C((up—éw)r).

The constants B and C can be deduced from the continuity of pres-
sure and of the normal component of the filtration velocity on the
boundary of the inhomogeneity, We thus obtain

360/Bo _ Bo
“lﬁﬁw'—zeolﬁuﬁ-ﬁl/ﬁl [ (1o — &w).

Hence, we can readily find éu =uy - uy,. We shall use éu in the
form given by Eq. (4.4), since the results obtained in this way will be
valid to within an order of magnitude in other cases also.

Direct solution of Eq. (4.2) for éw(t) is difficult, However, if we
consider the mean velocity w, of the vertical large-scale motion in
a volume containing many fluctuational formations, we have from
Eqs. (4.2), (4.4), and (3.12)

Weo =2 W* (00, X)ug

Wo = Woo (1 — 7T/,

Y23 In K i
W* (pO! X) - ( ) ( dp  |p=ps 1— PU) ’
o  2mal _ 4
= Gk x= g . (4.5)

We note that, in the case which we are considering, a positive
fluctuation ¢ > 0 will also lead to the upward displacement of the
particles, in accordance with Eq. (4.5)., This confirms the conclusion
reported by Leva [5, 17] that the aggregation of particles gives rise to
a tendency toward an additional expansion of the fluidized bed, It can
be shown that when a stationary filtration state is established near the
inhomogeneity, there is a value py=p' such that for py < o' the
fluctuation ¢ > 0 leads to the fall of the aggregated particles in the

_ bed, The value py= p' corresponds to a sharp minimum of wyand of

other statistical parameters of the fluidized bed. As the case defined
by Eq. (4.4) is approached, the quantity o' decreases and eventually
vanishes altogether,

Let us now consider the energy relations in the
fluidized bed. The work AA performed by the forces
(4. 2) per unit volume per unit time can be written
in the form AA = 6mgan Ky (Weo — Wg) wy. This work
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will compensate any loss of energy through large-scale

fluctuations

E ~ nmwy? | 2T .

By Eq. (1.2) the energy E is equal to the energy
dissipation W of small-scale fluctuational motions.
The latter energy can be written in the form [we are
averaging over the distribution Eq. (2. 1)]

W = 18ap,ank, [1 + Yasa (vor) ™1 (0 / m).

The last term in the square brackets appears be-
cause the viscous force acting on a particle rapidly
brought into motion is different from the force acting
on it during uniform motion [18]. The coefficient
s ~ 1 characterizes the relative magnitude of the sud-
den change in velocity during collisions and can be eva-
luated exactly. We shall assume that s =~ 1/2. For the
parameter T we have the obvious estimate
TaM i)

\m

l/a___pol/:x ( 0 )“/2
(pops) " '

Equating AA and E, and bearing in mind Eq. (4.5),
we obtain an equation from which we find that T ~
~ 1.257° Therefore

wy = 0.715 we = 0.745 W, (po, X) 1, . (4.6)

The ratio o of the velocity wy and the filtration ve-
locity u’ is shown in Fig. 5 as a function of py for X =
= 0 and X = 10. It is clear that even the large-scale
component of the total vertical velocity may approach
the filtration velocity, in accordance with the curve of
Fig. 1. The quantity px was assumed to be 0. 6.

The fact that the plots of « versus pg show a maxi-
mum agrees with the experiments, It is well estab-
lished [1, 7, 19] that the initial increase in the fluc-
tuation velocity with increasing u® is replaced by a
reduction u® has reached a critical value.

If we equate E to W, we obtain the equation for the
effective temperature of the fluidized particles:

8T, i ‘/*}_ ° o,
wlttrla) =g
Tzi(_a_f/z( POI/SP >'/z

4\ o * —PD/ )

It is readily seen that the mean square velocity of
small-scale motions is always considerably less than
wo, and w®/wy = (6/m) * Z/WO < 0.4, This is in agree-
ment with all the experiments cited above. For exam-
ple, according to [8] the lateral velocity w° is lower by
a factor of 3/4 than the longitudinal velocity wy + w°.
From Egs. (1.1) and (4. 1) we have

(4.7)

v’ (de—di) g

Uo = 6rpgak (po, X) °

Substituting this into Eq. (4.86),
and % = dy/d;, we obtain

and using Eq. (4.3)

wo 2= 3.8 (x — 1) Wy (09, X) X% w,,

We= W, K% w, = (gvg)¥s+ (4.8)

~i  The velocity w° can readily be determined from Egs.
(4. 7) and (4. 8). The characteristic velocity wx is pro-

_portional to the cube root of the kinematic viscosity of

“the liquid, and is in general independent of the type of
fluidized particles. The parameters of the particles
affect the intensity of the local motions only through
the dimensionless parameters X and ®. Under these
conditions w° ~ wy ~ %1/3, % > 1 and, moreover,

WP~ Wy ~ X‘/a~ A!/S,
X < Xq =~ 80—2'375

W~ X5

(A< 4)

Al/m, Wy~ X’/a —_ A’/u’ (X> Xy,

These relations are satisfactorily confirmed by experiments, For
example, Borodulya and Tamarin {21] have investigated the effective
‘thermal conductivity of a fluidized bed in the horizontal (a; ~ w°) and
vertical (@, ~ w,) directions, and have obtained empirical formulas
of the form aj ~ A‘Si, where the exponents ¢; decrease with decreas-
ing A. According to their estimates, &; £ 0. 27 8, 2 0. 43 in a wide
range of Archimedes numbers (up to 5:10%), For A > 5- 10* they found
that 0 < §; < 0.12, 0 < &, < 0.144 which is in agreement with the
above asymptotic estimates, In the case which we have considered,
when the formula given by Eq. (4. 4) is valid, the quantities w, and
w’ increase monotonically with A even for A ~ A,, It is readily
shown, however, that, in the second limiting case (stationary filtra-
tion) both these quantities have a maximum and a minimum as func-
tions of A (their dependence on X is illustrated by Fig. 6). This
feature of the function wy(A) and w°(A) is also in agreement with the
experimental results, Bondareva® has observed experimentally the
fluctuation-velocity maximum in the region of small A (A ~ Ay),
and explained it correctly by the change in the hydrodynamic state of
the flow past the particles in a fluidized bed as A increases.

The expressions given by Egs. (4.7) and (4. 8) com~-
pletely determine the coefficients in Eq. (2.4) and the
isotropic pressure of the solid phase. It can be shown
[we are assuming, for simplicity, that v = 0 in Eq.
(4.7)] that

n = 15x H (py X) X,

H = p,W, (Yt + 0.8 + 0.76Y) ,

L= 15% Z (00, X) X2y, Z = po, WY,
D=6 APy X) Xvy, A=W, ¥,
y=39-1072 (x—1) T (9o, X)
T = pW, (¥ + 1.2 + 0.757),
p =19 (¢ — )% I (p, X) X% (dw,?),
I =p,(1+7Y)Wg.

(g/Vo) 2

(4.9)

We note that the coefficients in Eq. (4.9) describe
only the isotropic components in the resultant trans-
port of the various quantities, which are connected
only with the small-scale motion of the particles. The
corresponding anisotropic components which appear
as a result of large-scale fluctuational motion can, in

- principle, be taken into account by analogy with the

*A. K. Bondareva, Motion of Particles and Heat
Transfer in a Fluidized Bed, Candidate's Dissertation,
Leningrad, 1958. Some of the results given in this
work, especially those referring to fluctuational mo-
tions of the particles in the bed, can be found in [1].
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theory of turbulent mixing by introducing, for example,
certain analogs of the Reynolds stresses, the effective
displacement path ! by analogy with the Prandtl pa-
rameter, or the parameter introduced in [7] and equal
to ~wyT. However, this forms an independent problem,
It is clear that an anisotropic term will also appear

in the expression for the total pressure of the solid
phase.

The kinematic viscosity n has not been corrected for effects due to
friction between the particles during their relative motion, The vis-
cosity 7' due to this mechanism of energy dissipation becomes very
high when pg —> p=, but falls rapidly with decreasing p;, becoming
very small for p, quite close to p,, It is clear that in the region where
n' is small, the dependence of the total momentum transfer along the
vertical, and consequently of the "longitudinal™ viscosity, -on & is
of the form shown by Fig. 7. Similar curves were found for the local
velocity as a function of the rate of filtration in [22].

Figure 8 shows the quantities Wy, H, Z, A, T, II,
multiplied by 100 as functions of pg for px = 0.6
and X = 10 (curves 16, respectively). These functions
do not contradict the data given in the literature.

The author wishes to thank G, I. Barenblatt and the
participants of his seminar for useful discussions.
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