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Under the conditions of developed fluidization there are intensive 
fluctuations both in the fluidizing medium and in the dispersed solid 
phase. These motions have a decisive effect on the rheological pro- 
perties of the fluidized bed, and on the chemical  reactions and t ram- 
port processes taking place in it [1]. Thus, for example,  in the exper- 
iments of Wicke and Fatting [2], who investigated the heat transfer 
between a fluidized bed and the walls of a heated container, the ef-  
fective heat transfer coefficient was found to be higher by an order of 
magnitude than the corresponding result for a fluidized bed held down 
by a wire grid to that the random motion of the solid phase was re- 
duced, it is clear that the initial stage of any study of the structure of 
tire fluidized bed as a whole, and of the subsequent development of 
any model, must involve an investigation of local structural proper- 
ties, including the above fluctuations. 

The t ime variation of the individual particle velocities is due to 

two different causes. First, there is the interaction between the par-  
ticles both through direct collisiom and through the medium of the 
liquid phase, and, secondly, there is the interaction with the viscous 
fluid. These two factors are not independent, so that the set of fluid- 
ized particles has certain features characteristic for both a dense gas; 
with a potential intramoleeular interaction, and a set of particles 
executing Brownian motion in a continuous medium. 

Any detailed statistical theory of a system of fluidized particles 
must be based on a representation of the random particle motions in 
the medium by a stochastic process with some definite properties (see, 
for example,  [8-4]). Ideally, this theory should lead to the formula- 
tion of a transport equation which, in view of the above properties of 
the system, should have some of the features of both the usual Boltzman 
transport equation and the Fokker-Planck equation. The solution of this 
final equation is, of course, more difficult than the solution of the 
Boltzman or Fokker-Planek equations. Moreover, there is also the 
problem of applying this equation to different special cases. An alter- 
native approach is to develop an approximate, but still sufficiently ef- 
fective, theory of the local properties of the fluidized bed, which 
would combine relative simplicity in application with sufficient rigor 
and generality. This kind of theory is put forward in the present paper. 
The corlclusions to which it leads are in good qualitative agreement 
with experiment. 

w M O D E L  O F  A F L U I D I Z E D  B E D  

C o n s i d e r  t h e  v o l u m e  o f  a f l u i d i z e d  b e d  c o n t a i n i n g  a 

v e r y  l a r g e  n u m b e r  o f  p a r t i c l e s ,  s o  t h a t  i t s  m a e r o s e o p -  

i c  c h a r a c t e r i s t i c s  c a n  b e  r e g a r d e d  a s  i n d e p e n d e n t  o f  t h e  

c o o r d i n a t e s .  M o r e o v e r ,  l e t  u s  c o n f i n e  o u r  a t t e n t i o n  to  

t i m e s  t f o r  w h i c h  t h e s e  p a r a m e t e r s  r e m a i n  p r a c t i c a l l y  

c o n s t a n t .  I f  t h e  l i n e a r  d i m e n s i o n s  o f  t h e  c h o s e n  v o l u m e  

a r e  m u c h  g r e a t e r  t h a n  t h e  c h a r a c t e r i s t i c  s p a t i a I  s c a I e  

o f  t h e  m i c r o s t r u c t u r e  o f  t h e  b e d ,  a n d  t h e  t i m e  t i s  m u c h  

l o n g e r  t h a n  t h e  c h a r a c t e r i s t i c  t i m e  s c a l e  f o r  i n t e r n a l  

m o t i o n s ,  t h e n ,  b y  a n a l o g y  w i t h  k i n e t i c  t h e o r y ,  t h e  

f l u i d i z e d  b e d  i s  s a i d  to  b e  i n  l o c a l  e q u i l i b r i u m .  I f  t h e  

m a c r o s c o p i c  p a r a m e t e r s  a r e  e n t i r e l y  i n d e p e n d e n t  o f  

t h e  c o o r d i n a t e s  a n d  o f  t i m e ,  t h e  s y s t e m  i s  s a i d  t o  b e  i n  

a s t a t e  o f  e q u i l i b r i u m .  O n l y  s u c h  s t a t e s  w i l l  b e  d i s -  

c u s s e d  b e l o w .  

I f  w e  n e g l e c t  f l u c t u a t i o n a I  m o t i o n  o f  t h e  t w o  p h a s e s ,  

t h e  s t a t e  o f  t h e  f l u i d i z e d  b e d  c a n  b e  d e s c r i b e d  b y  s p e c -  

i f y i n g  a s i n g l e  v a r i a b l e ,  f o r  e x a m p l e ,  t h e  p a r t i c l e  

c o n c e n t r a t i o n  P0 i n  t h e  l a y e r .  T h e  o t h e r  m a c r o s c o p i c  

v a r i a b l e s  s u c h  a s ,  f o r  e x a m p l e ,  t h e  m e a n  v e l o c i t y  ue 

o f  t h e  l i q u i d  p h a s e  o r  t h e  f i l t r a t i o n  v e l o c i t y  u ~ = 

= e0u0 = (1 - P0)Uo a r e  f u n c t i o n s  o f  P0 a n d  o f  t h e  m a t e -  

r i a l  c o n s t a n t s .  L e t  f = f ( P 0 , U 0 ) b e  t h e  i n t e r a c t i o n  f o r c e  

b e t w e e n  t h e  p h a s e s  p e r  u n i t  v o l u m e  o f  t h e  f l u i d i z e d  b e d .  
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I n  t h e  s e t  o f  c o o r d i n a t e s  i n  w h i c h  t h e  m e a n  v e l o c i t y  o f  

t h e  s o l i d  p h a s e  i s  z e r o ,  t h e  v e l o c i t y  u0 i s  a n t i p a r a l l e l  

t o  t h e  f o r c e  o f  g r a v i t y  a n d  s a t i s f i e s  t h e  e q u a t i o n  

/ (Oo, uo) = Po (d~ - -  d~) ~ ,  ( 1 . 1 )  

w h e r e  g i s  t h e  g r a v i t a t i o n a l  a c c e l e r a t i o n ,  a n d  d~ a n d  

d2 a r e  t h e  d e n s i t i e s  o f  t h e  l i q u i d  a n d  o f  t h e  p a r t i c l e  m a -  

t e r i a l ,  r e s p e c t i v e l y .  W e  n o t e  t h a t  t h e  f o r c e  f r e p r e -  

s e n t s  t h e  t r u e  r e s i s t a n c e  o f  t h e  f l u i d i z e d  b e d  to  t h e  

f l o w  o f  t h e  f l u i d i z i n g  m e d i u m  a n d ,  t h e r e f o r e ,  s h o u l d  b e  

d e t e r m i n e d ,  f o r  e x a m p l e ,  f r o m  t h e  o b s e r v e d  p r e s s u r e  

d r o p  in  t h e  f l u i d i z e d  b e d .  

In reality, the particles in a fluidized bed are in a state of random 
motion characterized by a continuous velocity distribution, and the 
true local values of p and u differ from the mean  values Po and u 0 
about which they fluctuate [1]. The disordered motion of the individ- 
ual particles, which is similar to the motion of molecules in a gas, 
has frequently been observed experimentally (see, for example,  the 
review in [5]). The space scale of such motions is, of course, of the 
order of the mean free path k of the particles between collisions, while 
the t ime scale ~" is of the order of k (w~ "1 where w ~ is the mean value 
of the modulus of the velocity of this motion. There is considerable 
experimental  evidence that addkional vertical fluctuations are super- 
imposed on these smal l -scale  and, in the first approximation, isotrop- 
ic motions. These additional fluctuations have associated spatial A and 
t ime T scales which are much greater than k and ~-. Figure 1 shows 
the modulus of the vertical component of the total fluctuation velo- 
city of the particles as a function of t ime.  This curve was obtained by 
Toomey and Johnstone [6] who investigated the behavior of glass balls 

0.38 mm in diameter in air. It is clear from gig. 1 that, in addi- 
tion to smal l -sca le  fluctuations, for which the t ime scale T is of the 
order of a small  fraction of a second, there is also a Iarge-scale fluc- 
tuation with a t ime scale T ~ 1 sac (the dashed line in Fig. 1 to r te -  
sponds to the filtration velocity for air). The presence in the fluidized 
bed of relatively Iarge groups of particles undergoing disordered verti- 
cal motion, which are phenomenologically analogous to eddies in a 
turbulent fluid, has also been noted by Bondarcva and Todes [7] who 
introduced the  concept of the effective displacement length which is 
necessary for these groups to decay. According to their estimates, this 
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length is of the order of a few centimeters. Similar and very detailed 
data obtained by radioactive tracer techniques were recently reported 
in [8, 9]. The well-defined alternation of fast and slow motions of 
groups of particles in the vertical direction was also noted in [10] and 
in many other papers [1]. 

Analys i s  of expe r imen ta l  r e s u l t s  suggests  the f o l -  
lowing p ic tu re  of i n t e rna l  mot ions  in a f luidized bed. 
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Fig.  2 

The individual  pa r t i c l e s  execute random i so t rop ic  
f i n e - s c a l e  motion which differs  f rom the motion of gas 
molecu les  only in that the veloci ty  of each par t i c le  may  
change not only as a r e s u l t  of co l l i s ions  be tween the 
pa r t i c l e s ,  but also as a r e su l t  of v i scous  d i ss ipa t ion  of 
the i r  energy.  This  type of mot ion leads  to f luctuat ions  
of the va r ious  va r i ab l e  p a r a m e t e r s  c h a r a c t e r i z i n g  the 
s tate  about the i r  mean  va lues ,  inc luding  f luctuat ions  in  
p or the p a r t i c l e - n u m b e r  densi ty  n = p / v  ~ where  v ~ is  
the volume of a par t i c le .  

It is na tu r a l  to t ry  to r e l a t e  the obse rved  l a r g e -  
sca le  ve r t i c a l  mot ion  of the p a r t i c l e s  with f luctuat ions  
in p or n. In fact, the r e s i s t a n c e  f offered by the p a r -  
t ic les  to the flow of the f lu id iz ing  med ium wil l  va ry  
within the l i m i t s  of the volume of the f luidized bed oc-  
cupied by the f luctuat ions ,  and the ba lance  of forces  
desc r ibed  by Eq. (1.1) wil l  be violated.  As a r e s u l t ,  
the pa r t i c l e s  pa r t i c ipa t ing  in the f luctuat ions  wil l  be ac-  
ce le ra ted  e i ther  upward or  downward under  the combined 
act ion of the force  f and the g rav i ta t iona l  force.  
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Fig.  3 

Dur ing  the motion and decay of the f lue tua t ional  f o r m a -  

t ions,  the ene rgy  a s sumed  by the pa r t i c l e s  pa r t i c ipa t ing  
in the l a r g e - s c a l e  f luc tuat ional  mot ion  wil l  be r e d i s -  
t r ibu ted  among the var ious  degrees  of f r eedom of the 
s m a l l - s c a l e  random motion,  both through co l l i s ions  
and through ind i rec t  i n t e r ac t ions  between the pa r t i c l e s  
in the r andom p r e s s u r e  field of the l iquid phase.  This  
compensa tes  the v i scous  ene rgy  d i s s ipa t ion  of the 
s m a l l - s c a l e  f luc tuat ional  mot ions .  In o ther  w o r d s ,  
the re  is an ene rgy  flux E f rom the mean  mot ion of the 
l iquid phase  to the l a r g e - s c a l e  v e r t i c a l  f luctuat ions  
and then to the s m a l l - s c a l e  motion.  In the q u a s i - s t a -  

t i o n a r y  s tate  this  flux is  equal to the power W d i s s i -  
-pa ted  into heat  as a r e su l t  of v i scous  f r ic t ion.  The 

quas i -  s t a t ionar i ty  condit ion 

E = W (1.2) 

- o c c u p i e s  a cen t ra l  pos i t ion  in the theory given below 
: :and shows that the s t a t i s t i ca l  c h a r a c t e r i s t i c s  of a 
Lsys tem of p a r t i c l e s  can va ry  only as a r e su l t  of a 

change in the macroscop ic  p a r a m e t e r s  which take place 
in a t ime  which is  much g rea t e r  than the c h a r a c t e r i s t i c  
t imes  T and T. It is c l ea r  that the equ i l ib r ium,  or the 
local  equ i l ib r ium,  defined above is  n e c e s s a r i l y  quas i -  
s ta t ionary .  We note that under  the condi t ions  of devel -  
oped tu rbu len t  f luidizat ion,  or  if the f lu idiz ing med ium 
is  poorly d i s t r ibu ted  in the bed, there  is  an addit ional 
energy  flux E' due to the capture  of the pa r t i c l e s  by 
eddies or f luctuat ions  in the l iquid phase.  Bubbles 
r i s i n g  in the bed in the case  of inhomogeneous f lu id iza-  
t ion may play an analogous role.  To take these  pheno- 
m e n a  into account we mus t  in t roduce a random tu rbu -  
lent  f ield which is  unknown a p r io r i ,  we m u s t  cons ide r  
the mot ion of the bubbles ,  etc.  All this  compl ica tes  
the p r o b l e m  cons iderab ly .  We shal l  the re fore  ignore  
these  phenomena  in the p r e s e n t  paper ,  and this  can 
obviously lead to e r r o r s  when the theory is applied to 

h igh ly  tu rbu len t  f luidizat ion.  
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Fig. 4 

When the q u a s i - s t a t i o n a r i t y  condit ion given by Eq. 
(1.2) is  sa t i s f ied ,  the t rue  ensemble  of f luidized p a r -  
t i c les  undergo ing  ve loc i ty  changes between co l l i s ions  
and cont inuously  dissfpd~ihg thelr-~energy is  s t a t i s t i -  
ca l ly  equivalent  to a f ic t i t ious  ensemble  of p a r t i c l e s  
whose ve loc i t i e s  change only as a r e s u l t  of co l l i s ions .  
This  hypothesis  co r r e sponds  to a fact which is  well  
known in k ine t ic  theory,  namely ,  that the p a r a m e t e r s  
which c h a r a c t e r i z e  the s t a t i s t i c s  of equ i l i b r ium s ta tes  
a re  independent  of the method whereby  the s ta te  is  e s -  
tab l i shed  and of the specif ic  form of i n t e r ac t i on  be -  
tween the pa r t i c l e s .  

We shal l  a s sume  in addition that 

~ ~~ 

where  T ~ is  the re laxa t ion  t ime  for  a pa r t i c l e  moving 
in a v i scous  fluid. When Eq. (1.3) is sa t i s f ied ,  the 
mean  f ree  path is ,  in fact,  independent  of the i n t e r a c -  
t ion between the p a r t i c l e s  and the med ium.  It is  c l ea r  
that  the above condit ion is sa t i s f ied  in many  cases  
which are  of i n t e r e s t  in p rac t i ce .  Except ions to this  
occur  where  e i ther  the l iquid phase is  highly v i scous  
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or the pa r t i c l e s  are  ve ry  smal l .  When Eq. (1.3) is  
sa t i s f ied  we can analyze t r a n s p o r t  p r o c e s s e s  in the 
fluidized bed sys t em as in the e l emen ta ry  kinet ic  the-  
ory of gases ,  i .e. ,  we can use the idea of an e q u i v a l e n t  
ensemble .  S t r ic t ly  speaking,  this equivalence  p r i n c i -  
pie need not be int roduced,  and the s t a t i s t i c s  of the 
fluidized pa r t i c l e s  can be developed independent ly  by 
analogy with the Gibbs d i s t r ibu t ions  us ing  Eqs. (1.2) 
and (1.3). 

If P(w i) is the p a r t i c l e - v e l o c i t y  d i s t r ibu t ion  func-  
tion for the s m a l l - s c a l e  motion n o r m a l i z e d  to the p a r -  
t i c l e - n u m b e r  densi ty ,  and Q(6w) is the probabi l i ty  that 
a pa r t i c l e  wil l  en t e r  a f luctuat ion which co r r e sponds  
to a veloci ty  5w of l a r g e - s c a l e  motion,  then the mean  
n u m b e r  of pa r t i c l e s  with ve loc i t i es  in the range  
{ dwi} d(6w) is given by 

dn = P (wi) Q (6w) {dwi}d (6wl), 6wt = 6w6~, (1,4) 

where  the x ~ xl axis l ies  in the d i rec t ion  of the f i l t r a -  
tion veloci ty.  

Thus,  local  f luctuat ional  mot ions  of the pa r t i c l e s  in 
the f luidized bed have a ve ry  compl ica ted  cha rac t e r .  
They form a superpos i t ion  of unco r r e l a t ed  s m a l l - s c a l e  
i so t rop ic  mot ions  s i m i l a r  to the t he rma l  mot ion,  and 
l a r g e - s c a l e  ve r t i ca l  f luctuat ions which in t roduce  an 
anisotropy into the total  d i s t r ibu t ion  given by Eq. (1.4). 

w FORMAL STATISTICS OF EQUILIBRIUM STATES 

It follows f rom the above account that the basic  hypo- 
theses  are  the a s sumed  isot ropy of the equ i l ib r ium d i s -  
t r ibu t ion  P(wi) and the a s sumed  independence of the 
n u m b e r  of p a r t i c l e s  with a given veloci ty  w on the i n t e r -  
action between the pa r t i c l e s .  Together  with the quas i -  
s t a t i ona r i t y  condit ion (1.2),  these hypotheses  lead to 
the following funct ional  equation: 

p (w~) p (w~) = p (w~) p (w~'), 

Wl 2~-w2 2~wa ~ @Wa S, 

where the subsc r ip t s  r e p r e s e n t  the ve loc i t ies  of two 
dif ferent  pa r t i c l e s  before  and af ter  in te rac t ion .  
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Fig. 5 

The solution of this problem leads to the Maxwellian 

d i s t r ibu t ion  

m 3/' ~ )  (2.1) 

where m is  the pa r t i c l e  m a s s  and 0 is a s c a l a r  quan-  
t i ty which depends on the mac roscop i c  p a r a m e t e r s  of 
the f luidized l aye r  and can be i n t e rp re t ed  as the ef-  

fect ive s t a t i s t i ca l  " t empera tu re"  of the sys t em of f lu-  
idized pa r t i c l e s .  

X> 

Fig.  6 

We note that, in addition to translational degrees of freedom, each 
particle wilt also have rotational degrees of freedom. The rotation 
of individual particles has been observed experimentally [10]. When 
the radius of the particles is sufficiently small, one would expect that 
the dissipation of rotational energy occurs much more rapidly than 
the excitation of these degrees of freedom, so that the mean energy 
of translational motion is much greater than that of the rotational 
motion (in other words, the effective rotation temperature is much 
less than 0). Although the rotation of the particles can, in principle, 
be taken into account by introducing the Eucken corrections [11], 
this effect will not be taken into account here. 

Us ing  the equivMent ensemble  hypothes is ,  and ap- 
p ly ing  a s t anda rd  p rocedure ,  it  is  quite easy to obtain 
for  the e qu i l i b r i um state  of the f luidized bed the same  
r e su I t s  as for a gas. Thus,  we can read i ly  evaluate  the 
pa r t i t ion  funct ion 

t M 8/2N Z =  ~ V 0  (2~rn0) , 

where  V0 is the f ree  vo lume (in the sense  of van der  
Waals) c o r r e spond i ng  to N pa r t i c l e s .  The effective 
Helmhol tz  f ree  energy  is  then given by 

= --OlnZ = - -  

--ON [In ( V o / N )  + 3]~ (ln0 + In (2a m))]. 

The effect ive "entropy" S and the i so t rop ic  " p r e s -  
sure"  of the sol id phase are ,  r e spec t ive ly ,  given by 

S = - - O W / O 0 ,  p = - - O W / O V .  

The r e l a t ion  between the total  vo lume V occupied by 
the N pa r t i c l e s  and V0 can mos t  s imply  be es tab l i shed  
by us ing  the equation of s tate  of the ensembIe  found 
independent ly .  F o r  a dense  gas of spher ica l  pa r t i c l e s  
of r ad ius  a we have [11] 

pv  (l - -  6) = O, 

a = (v./v)'/3 = (n/n,)'/a ~ (p/p,) 'h,  (2.2) 

where  v = V/N is the specif ic  vo lume of a pa r t i c l e ,  and 
v . ,  n . ,  and p,  are  the va lues  of the c o r r e spond ing  pa -  
r a m e t e r s  in the c lose ly  packed s tate .  Equat ion (2.2) is va l -  
id for pnot  too smal l ,  in which case  an individual  pa r t i c l e  
will  not r ead i ly  escape  f rom the cell  occupied by it. A c -  
co rd ing to  [11] th is  equat ion is val id for  0.125 p.  -< p --< p. .  

If we d e t e r m i n e  p f rom Eq. (2.2) and e xp re s s  it in 
t e r m s  of the f ree  energy ,  we obtain 

v dVo t = (V./. V,./~)3 
Vo dV ~ T - 2 7 '  on V 0 - -  . 

Using g? once again,  we obtain the fol lowing ex-  

p r e s s i o n  for the entropy:  
2 S = N  [31n (v'/~-- v , / ~ ) +  

+~/2(lnO + In (2rim) + 1)] (2.3) 
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F r o m  the r e s u l t s  of E n s k o g  [33] on the t r a n s p o r t  of  
e l a s t i c  s p h e r e s  wi th  d e l t a - f u n c t i o n  i n t e r a c t i o n  in d e n s e  
g a s e s  we h a v e  the  f o l l o w i n g  e x p r e s s i o n s  f o r  the s h e a r  

F ig .  7 

v i s c o s i t y  V, the  bulk  v i s c o s i t y  ~, the  s e l f - d i f f u s i o n  c o -  
e f f i c i e n t  (D) of the  p a r t i c l e s ,  and the  t r a n s p o r t  of  t h e i r  
s m a l l - s c a l e  p u l s a t i o n a l  e n e r g y  (7) w h i c h  i s  the  a n a l o g  
of  the  t h e r m a l  conduc t iv i t y :  

~1 = 49~1 ~ (Y-~ -4- 0.8 + 0.76 Y), ~ = 4p~l~ 

D = 49D~ -r, 7 = 497 ~ (Y-~ + 1 .2 - t -0 .75  Y), 

no s__!_(,~o~'/, D o 3_L_ ~~ ( o ~'/, 
= 6 4 a  ~. \ ~  ] ' - ~  3 2 a  ~ p \ ~ - m - /  , 

c o T] o 
TO 5 v~ t5 

= ~ --~--~ = -U-~-- '  

pv z (2 .4 )  Y ( O ) =  -6 " - - - t  "~ i - - ~  ' 

w h e r e  ~~ D ~ y~ a r e  the  v a l u e s  of the  c o r r e s p o n d i n g  
c o e f f i c i e n t s  at  z e r o  p r e s s u r e  p (in a d i lu t ed  gas  of the  
s a m e  p a r t i c l e s ) .  

In the  e x p r e s s i o n  g iven  by  Eq.  (2 .4 ) ,  c v i s  the  e f -  
f e e t i v e  " h e a t  c a p a c i t y "  of  a s i n g l e  p a r t i c l e  a t  t h e  
t e m p e r a t u r e  0. 

The  quan t i t y  Y is  p l o t t e d  as  a f unc t i on  of  p in F i g .  
2a  ( for  p .  = 0 .74 ,  wh ich  c o r r e s p o n d s  to h e x a g o n a l  
c l o s e  pack ing) .  The  r e d u c e d  c o e f f i c i e n t s  ~*, e tc .  
7)* = (4p~?o) -1 a r e  shown in  F i g .  2b [11]. 

F o r  v a l u e s  of p f o r  wh ich  Eq.  (2 .2)  i s  s a t i s f i e d ,  the  
func t ion  Y can  be  c a l c u l a t e d  f r o m  the  s a m e  equa t ion .  

We note that the quantities ~~ D ~ T ~ are independent of the den- 
sity of the gas. This is a well-known result in the kinetic theory, of 
gases, and is expIained by the fact that the reduction in the number 
of particles passing through an element of area per unit time is exact- 
ly compensated by the increase in the mean free path k as the pres- 
sure is reduced, There is an analogous situation in a fluidized bed if 
the inequality given by Eq. (1.3) is satisfied. 

F o r  the  p r o b a b i l i t y  of a s m a l l  f l u c t u a t i o n  60 a c e o m -  
part ied by a change  6 S in t he  e n t r o p y  we  h a v e  

dO (6p) ~ exp (6S (69)) d (gO). (2, 5) 

In p a r t i c u l a r ,  i f  we use  G ibbs '  f i r s t  l e m m a  f o r  the  r e ,  
l a t i v e  s q u a r e  of the  f l u c t u a t i o n  in t he  n u m b e r  of p a r -  
t i c l e s  in a v o l u m e  V of the  f l u i d i z e d  bed ,  we ob ta in  in 

the  u s u a l  way  

In d e r i v i n g  t h i s  r e s u l t  we  h a v e  u s e d  the  equa t i on  of  

s t a t e  in the  f o r m  g i v e n  by Eq.  (2 .2 ) .  The  e x p r e s s i o n  
g iven  by Eq.  (2 .6 )  was  d e r i v e d  in [12] on the  b a s i s  of 

the  Wel l -known  S m o l u c h o w s k i  f o r m u l a ,  but  t h i s  i s  i n -  
c o r r e c t  b e c a u s e  the  l a t t e r  f o r m u l a  i s  not  v a l i d  fo r  
v e r y  d e n s e  s y s t e m s  s u c h  as  a f l u i d i z e d  bed.  

w S M A L L  F L U C T U A T I O N S  IN A SET OF  F L U I D I Z E D  
P A R T I C L E S ,  

When the  v o l u m e  V i s  s u f f i c i e n t l y  l a r g e  we  can  a s -  
s u m e  tha t  N ~ c o n s t ,  i n - a c c o r d a n c e  wi th  Eq.  (2 .6) .  
We s h a l l  s u p p o s e  tha t ,  a s  a r e s u l t  of  f l u c t u a t i o n s ,  the 
m e a n  d i s t r i b u t i o n  of p a r t i c l e s  in th i s  v o l u m e ,  p = P0 = 
e o n s t ,  h a s  b e c o m e  p = P0 + ~o ( x , y , z , t ) .  The  f o r m  of 
the  func t ion  ~o i s  r e s t r i c t e d  by the  c o n d i t i o n s  

- -  po < c p <  p , - -  po, Iq~dV = O. (3 .1)  
V 

L e t  us  now i n t r o d u c e  the  q u a n t i t i e s  ~ and r by the  
f o r m u l a s  

v ,  = S e x y ,  = S e d v  
V "y_ 

w h e r e  V + and V -  a r e  the r e g i o n s  of V in w h i c h  ~v i s  
p o s i t i v e  and n e g a t i v e ,  r e s p e c t i v e l y .  A n a l y s i s  of a r -  
b i t r a r y  f l u c t u a t i o n s  in t h i s  s y s t e m  i s  v e r y  d i f f i cu l t  
( for  e x a m p l e ,  6S(~o) in Eq.  (2 .5)  i s ,  in g e n e r a l ,  a c o m -  

p l i c a t e d  func t iona l  of ~0). To  ob ta in  a p p r o x i m a t e  r e -  
su l t s  we  s h a l l  u s e  the  a s s u m p t i o n  tha t  the  f l u c t u a t i o n s  
a r e  s m a l l .  The  s t a t e  c o r r e s p o n d i n g  to d i f f e r e n t  d i s -  
t r i b u t i o n s  p (x, y, z, t) w i th  g iven  i n t e n s i t y  r c o r r e -  
s p o n d s . t o  a c h a n g e  of e n t r o p y  (as  c o m p a r e d  w i t h  the  
u n d i s t u r b e d  s t a t e  p = P0) w h i c h  can  be  w r i t t e n  in the  

f o r m  . ,  

8S 3 = 6 [ n l n ( v ' / , - - v , ' / . ) l d V =  

*/s v * . _  - -  lae" 

po~/, p,U, 

w h e r e  we have  u s e d  Eq. (2 .3 ) .  
F r o m  Eq.  (3 .1 )  we  h a v e  f o r  s m a l l  f l u c t u a t i o n s  

I - -  V~z 8S~-~ 2 p ~ ) 2  N ~ : - - Q ( p 0 ,  p , ) N ~ .  (3.2)  

To obtain the probability of the disturbed state corresponding to a 
given value of r in accordance with Eq. (2.5), we must find its statis- 
ileal weight, i.e., introduce the measure of the set of functions r 
y, z, t) for which the quantity ~ lies in a given interval. Let us repre- 
sent ~0 by the trigonometric polynomial 

(P ~ 2 2~iz 2 ~ / y  2~lz a~l (t) cos ~ cos cos = 
% .i,l ~ Lz 

zg rr  2~mkz k 
= ~ %(t)  11 cos. 

m ~ L k  

M = M ~ M u M  z, x l ~ = x ,  y ,  z , ( 3 , 3 )  

We then have the Parseval equation 

V ~ =  LxLvLz .M 

m 

In these expressions I_ x, Ly, L z are the linear dimensions of the 
volume V, 1 -< i -< M x, 1 -< i -< M. 1 - Z -< M_ and the vec- 
tor m represents different combinations of the subscripts i, j, and Z. 
It is readily seen that functions of the form given by Eq. (a. 3) auto- 
matically satisfy the second condition in Eq. (8. 1). Transforming from 
V t o V  +, we shall write ~o + >- 0, onV + in the fo rm  
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M 
~+ = ~ am+ (t) E cos 2"~m~x~'+ ~+ - -  (r+)= 

7 ~ LC 8-" 

Since o*  must be positive in V +, we have a+m > 0. It is also 
readily shown that, since co + must be bounded, we have 

~]am -e (t) < p. -- PC'. 

�9 . + 

The quantmes a m (t) can be regarded as the coordinates of a 
point in M-dimensional space. The possible vaines of a + define the 
region of this space bounded by the hypersuffaces 

Z (am§176 = (R+)2' Z am+ = P* - -  Po, am~ = 0 ,  (3 .5 )  

where R + is the maximum value of r + (referred to the entire volume 
V) which is defined below. The required measure can reasonably be 
taken to be the volume of the spherical layer (r, r + dr) bounded by 
the hypersurfaces (3.5), This choice is dictated by the statistical homo- 
geneity of the above space, i.e., the equivalence of different coeffi- 
cients ar~, but it also follows from Eq. (3.4). It is readily seen that in- 
stead of the volume of the spherical layer in the single quadrant a ~  -> 
-> 0 we can take the volume of the layer bounded by the 2 M hyper- 

planes: 

Z am+ ( - - t )am = P* - -  Po . (3 .6 )  

in this expression the superscripts s m can assume values between 0 and 
1 independently of each other. 

Consider to begin with a voIume dr: M bounded by the M-dimen- 
sional spheres r and r + dr and two hyperplanes of the form (3. 8) 
which are symmetric relative to the origin. We have 

dQ M = S3i" (r) dr = (%IS3I  (r) dr ,  

where S~I is the area of the corresponding spherical zone, S M is the 
area of the entire hypersphere of radius r, and ~M is, by definition, 
equal to S~I/S M. This is illustrated by Fig. 3 which shows the above 
region for hi = 2. Lines 1 and 1' correspond to the symmetric hyper- 
planes, and the circle R + corresponds to the hypersphere. The equi- 
valent of S~I is the total length of the thick arc shown in the figure, 
while the hatched areas are equivalent to the volume of the spherical 

layer. 

Let us now define in the space of the Fourier coefficients a unitary 
transformation {a~} --" {b~l} such that the coordinates of the points 

of intersection of the perpendicular dropped onto the hyperplane from 
the origin are brn+0 =-bfmt  (broken line in Fig. 3). To determine b we 
shall use the symmetry of a ~  in gq. (3.6). The coordinates of the 
above point in the basis {a +} are then given by 

am~ = ~ M q (P, -- po). 

Hence, we find that 

= ( a m o / - )  - = ~ (P.  - Po). 

It is clear that, as M increases, the hyperplanes approach each 
other without limit. The ratio of the area of the spherical zone to the 

area of the entire sphere can be shown to be [13] 

( p. - -Po '~ 
~0M (r),~ erf k - - - - ~ 2 r  ),  M > t .  

Let us now introduce two new symmetric hyperplanes (2 and 2' in 
Fig. 3), and consider their intersection with the figure bounded by the 
hypersphere r and the original hyperplanes. Since for M >> 1, these 
hyperplanes can be as close to each other as desired, and we can as- 
same that the area of the M-dimensional annular zone is proportional 
to the area of the (M -- 1)-dimensional sphere of radius r, so that 
we can repeat the above analysis for the (M -- 1)-dimensional sphere. 

We thus find by induction that 

(~ -n "~" ~ ~ �9 " ' ~-~ O)M, M - -  n >~ t �9 

Hence, apart from unimportant constant factors (we recall that 

S M ~ rM-l), the required measure in V + is given by 

%+ (r) [r err ( ~ ) ]  ~ , .  ,_7 (3.7) 

where x+(r) is a function of r which is independent of M. 

/0 
I i f . ,~m :: 

#1 i / ~ J "  I 

~i P! ! ", \ 

,,!!/ 
a; 2 �9 , I ~, 1.1{ 

;ii I J I \  lli 
O Q/  0.2 0.8 QII 0,5 ~ 

Fig. 8 

A similar analysis is valid for q- in the region V-. The correspond- 
ing measure is then again given by Eq. (3.7) except that p.; - P0 is 

replaced by P0. 
From the above results we find that the probabilities dQ • (r) for the 

quantities r* to lie in the interval (r, r + dr) are given by 

F . /  P , - -Po,TM ( _  Q NrO) dr, ) j oxp - g  

We must now find M and R e. The Fourier coefficients am( t  ) cor- 
respond to different degrees of freedom of the set of functions ,, in 
Eq. (3. 3). Suppose that the particles move in groups of N 0 particles 
per group. This means that by specifying the function ~ we are also 
specifying N/N 0 vector functions of time defining the position of 
these groups in the volume V. Instead of these functions we can intro- 
duce the set of independent scalar Coefficients am(t ) and, since they 
are independent, we have M = :3N,IN0. 

In the limit of zero pressure we have N~ = 1, i .e.  each particle 
behaves independently of other particles. In a dense system this is 
no longer true, since a virtual displacement of a given particle gives 
rise to a regrouping and a correlated displacement of neighboring par- 
ticles. The limiting case when the specification of the motion of a 
single particle completeIy defines the motion of all other particles in 
a given group occurs in the case of close packing of the particles in 
this group. We shalI suppose that close packing is achieved in a vol- 
ume V' <<V of the fluidized bed in which the mean number of parti- 
cles is N' = V' /v = (p, / v~ '. In the closely-packed state this vol- 
ume will contain N O = (p,:. / P0)N' particles, and hence it follows that 

6N' = po -~ (p, - -  po)?<o. 

We can then show that for closely packed groups of particles 

d q ( N o ) ~ e x p ( _ ~ N o ) d 3 . o ,  = (P.--Po)'-' P, t--'2/87 
2 po s ( i - - ; ) -  ' 

From this distribution we have the following expressions for the 
averages <NO> and <M> : 

l + a  t 
< N o >  a = W ' 

3N 
<M) = 3Nae = (--  Ei (--  a)) ~ <No> = 3GN. (3.9) 

This expression for (M)  should be used in all calculations involv- 
ing the representation of the function ~o by Eq. (3. 3). Figure 4 shows 
a plot of Q as given by Eq. (3.2) and G as given by Eq. (8.9) as func- 
tions of P0 for p, = 0.6. It is clear from this figure that G is appre- 
ciably different from unity only in a small neighborhood of p. .  
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The maximum values of R + and R- are reached when the region 
V- of the volume V is completely free of particles, and V + is filled 
with closely packed particles. Using Eqs. (3. 1) and (3. 4) we can show 
that 

/t-=max{r-} (8 P*--P" po') '/ ' .  (3.10) 

Consider the integral 
R+ 

0 

where R + is given by Eq. (3. 10). 
The integral reaches a maximum at r = r+m where 

G F P, - -  Po 
(rm'~):l= t2-0--. L i - - - ~  X 

• exp ( - -  ( p * -  poI'X ._, ( p, - -  p, 2-V2-F )err ~ / j .  (a.m 

There is an analogous equation for t in except that p, - p 0 is re- 
placed by p 0. The asymptotic representation of the integrals J• for 

k large N can be obtained by the Laplace method: 

((r-+) 2) = (rain {rm +-, R:~}) ~, (r~) ~ ((rrn+)% + ((rrn-) ~) . 

In practically the entire region of variation of P0 we have r~n < 
< R • This supports the validity of the theory of ~mall fluctuations 
used above, 

N e g l e c t i n g  t h e  d i f f e r e n c e  b e t w e e n  G a n d  u n i t y ,  a n d  

b e t w e e n  r m a n d  1 2 G / Q ,  w e  f i n a l l y  h a v e  

<*> = ~l~<r~> ~ 30 -~ . (3.12) 

W e  s h a l l  u s e  t h i s  e x p r e s s i o n  in  t h e  c a l c u l a t i o n s  b e l o w .  

d 
ICo' = - ~ - p K  (p, X)I,=po, ( 4 . 2 )  

w h e r e  w e  h a v e  u s e d  t h e  n e w  d i m e n s i o n l e s s  p a r a m e t e r  

X ~-~ 0.033A'/, : (4 .3)  

The quantities 6u and 6w represent the changes in the velocities of 
the liquid and solid phases within the fluctuations and, in general, are 
t ime-dependent .  The change 5u can be approximately estimated by 
considering the filtration of a liquid in a porous medium with porosity 
1 - P0 and containing a moving inhomogeneity with porosity 1 - P0 - 
- qp. This can be done by using, for example, the equations of [16]. 
We shall assume, for simplicity, that the characteristic time for an 
appreciable change in the flow of the liquid near the inhomogeneity 
is considerably greater than the mean lifetime T of the inhomogeneity. 
Hence, assuming that the flow rate of the liquid phase is constant, 
we have 

8u ~ u0 (l--p0) -1 (p . (4. 4) 

In the opposite limiting case, it is sufficient to consider stationary 
filtration. If we use the subscripts 0 and I to refer to the exterior and 
interior of the inhomogeneity, we can write down equations for the 
pressure in the liquid and for the rate of filtration in terms of pressure 
gradients in the form 

Aioi = 0 ,  u( 0 = ~i Op~ 9 ~to 
- -  ~ Or ' ~ (p )=-~- -~ -pK(p ,  X).  

We shall seek the solution of the Laplace equations in the form 

po = (-- N + er-8) ((Uo - -  8w) r), pl = - -  C ((Uo - -  8w) r )  

The constants B and C can be deduced from the continuity of pres- 
sure and of the normal component of the filtration velocity on the 
boundary of the inhomogeneity. We thus obtain 

3so / ~0 ~o 
I l l  - -  ~W - -  2e  0 / ~ o +  61 / ~i  ~1 (110 - -  ~ w ) .  

w E F F E C T I V E  T E M P E R A T U R E ,  I N T E N S I T Y  O F  

F L U C T U A T I O N S ,  A N D  T R A N S P O R T  C O E F F I C I E N T S  

W e  s h a l l  u s e  o n l y  t h e  f i r s t  t w o  t e r m s  in  t h e  e x p a n -  

s i o n s  o f  t h e  d i f f e r e n t  f u n c t i o n s  i n  t e r m s  o f  ~ in  t h e  

n e i g h b o r h o o d  o f  P0. In  f a c t ,  m a n y  i m p o r t a n t  f u n c t i o n s  

a r e  v e r y  d e p e n d e n t  on  P0 a n d ,  t h e r e f o r e ,  t h e  r e s u l t s  

w h i c h  w e  s h a l l  o b t a i n  b e l o w  w i l l  b e  v a l i d  o n l y  to  w i t h -  

i n  an  o r d e r  o f  m a g n i t u d e .  

T o  b e  s p e c i f i c ,  w e  s h a l l  s u p p o s e  t h a t  t h e  f o r c e s  

a c t i n g  on  t h e  p a r t i c l e s  u n d e r g o i n g  t h e  f l u c t u a t i o n a l  

m o t i o n  c a n  b e  s a t i s f a c t o r i l y  d e s c r i b e d  b y  t h e  s e m i -  

e m p i r i c a l  f o r m u l a  [14] ,  

A~3.~s 
B--= 

t8 + 0.6(Ae4'75) 'h ' 

B = 2.oa A 8ga3 d2--  d, ( 4 . 1 )  
V0 ~0 2 d l  

w h e r e  R a n d  A a r e  t h e  R e y n o l d s  a n d  A r c h i m e d e s  n u m -  

b e r s ,  a n d  v0 i s  t h e  k i n e m a t i c  v i s c o s i t y  o f  t h e  l i q u i d  

p h a s e .  In  t h e  l i m i t i n g  c a s e  o f  v e r y  s m a I 1  A r c h i m e d e s  
n u m b e r s ,  t h i s  f o r m u l a  i s  c o n f i r m e d  i n d e p e n d e n t l y  b y  

t h e o r e t i c a l  c o n s i d e r a t i o n s  [15] .  I t  f o l l o w s  f r o m  E q .  

( 4 . 1 )  t h a t  t h e  a d d i t i o n a l  f o r c e  F ( ~ )  a c t i n g  o n  a p a t t i  ~- 

c l e  i n  i t s  l a r g e - s c a l e  m o t i o n  i s  g i v e n  b y  

F ((p) ~ 6n~oa [Ko (Su - -  5w) + Ko'uotP], 

K o  = K (P0, X),  K(p,  X )  = 8~ '76( t+~2"375X) ,  

Hence, we can readily find 5u = u 1 - u0. We shall use 5u in the 
form given by Eq, (4.4), since the results obtained in this way will be 
valid to within an order of magnitude in other cases also. 

Direct solution of Eq. (4. 2) for 6w(t) is difficult. However, if we 
consider the mean velocity w 0 of the vertical large-scale motion in 
a volume containing many fluctuational formations, we have from 
gqs. (4. 2), (4,4), and (3. 12) 

Wo ~ w o o  ( t  - -  e-r / '*) ,  wo~ ~ W ,  (po, X)uo ,  

w ,  (po, X) = t-~-/ ~--N--P o=o~ TzTp0) ' 

.go = 2ua~ d2 (4, 5) 
9voKo ' > : -  dl " 

We note that, in the case which we are considering, a positive 
fluctuation ~ > 0 will also lead to the upward displacement of the 
particles, in accordance with Eq. (4. 5). This confirms the conclusion 
reported by Leva [5, 12] that the aggregation of particles gives rise to 
a tendency toward an additional expansion of the fluidized bed. It can 
be shown that when a stationary filtration state is established near the 
inhomogeneity, there is a value P0 = P' such that for p~ < p' the 
fluctuation ~o > 0 leads to the fall of the aggregated particles in the 
bed. The value P0 = P' corresponds to a sharp minimum of w0 and of 
other statistical parameters of the fluidized bed. As the case defined 
by Eq. (4. 4) is approached, the quantity p' decreases and eventually 
vanishes altogether. 

Let us now consider the energy relations in the 

fluidized bed. The work AA performed by the forces 

( 4 . 2 )  p e r  u n i t  v o l u m e  p e r  u n i t  t i m e  c a n  b e  w r i t t e n  

in  t h e  f o r m  A A  ~ 6 v # 0 a n  K~ (wr162 - wo) w0. T h i s  w o r k  
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wi l l  c o m p e n s a t e  any  l o s s  of e n e r g y  t h r o u g h  l a r g e - ' s c a l e  
f l u c t u a t i o n s  

E ~ .  nmwo ~ / 2 T .  

B y  Eq.  ( 1 . 2 )  t he  e n e r g y  E i s  e q u a l  to  t h e  e n e r g y  
d i s s i p a t i o n  W of s m a l l - s c M e  f l u c t u a t i o n a l  m o t i o n s .  
T h e  l a t t e r  e n e r g y  c a n  b e  w r i t t e n  in  t h e  f o r m  [we a r e  

a v e r a g i n g  o v e r  the  d i s t r i b u t i o n  Eq.  (2 .1) ]  

W .~. t 8 r ~ o a n K  o [t + 1/~sa (gvoT)-v..,] (0  / m) .  

T h e  l a s t  t e r m  in  t h e  s q u a r e  b r a c k e t s  a p p e a r s  b e -  
c a u s e  t he  v i s c o u s  f o r c e  a c t i n g  on  a p a r t i c l e  r a p i d l y  

b r o u g h t  i n to  m o t i o n  i s  d i f f e r e n t  f r o m  t he  f o r c e  a c t i n g  
on  i t  d u r i n g  u n i f o r m  m o t i o n  [18].  T h e  c o e f f i c i e n t  
s ~ 1 c h a r a c t e r i z e s  t he  r e l a t i v e  m a g n i t u d e  of  t he  s u d -  

d e n  c h a n g e  in  v e l o c i t y  d u r i n g  c o l l i s i o n s  and  c a n  b e  e v a -  

l u a t e d  e x a c t l y .  We s h a l l  a s s u m e  t h a t  s ~ 1 /2 .  F o r  t he  

p a r a m e t e r  r we h a v e  t he  o b v i o u s  e s t i m a t e  

~ a  

E q u a t i n g  AA and  E,  and  b e a r i n g  in  m i n d  Eq.  ( 4 . 5 ) ,  

we o b t a i n  an e q u a t i o n  f r o m  w h i c h  we f i n d  t h a t  T 
1 . 2 5 r  ~ T h e r e f o r e  

w0 ~ 0 .7t5  w~o = 0 .7t5  W .  (P0, X) u 0 . ( 4 . 6 )  

T h e  r a t i o  c~ of t he  v e l o c i t y  w0 and  t he  f i l t r a t i o n  v e -  

l o c i t y  u ~ i s  s h o w n  in  F i g .  5 as  a f u n c t i o n  of P0 f o r  X = 

= 0 and  X = 10. I t  i s  c l e a r  t h a t  e v e n  t h e  l a r g e - s c a l e  
c o m p o n e n t  of t he  t o t a l  v e r t i c a l  v e l o c i t y  m a y  a p p r o a c h  

the  f i l t r a t i o n  v e l o c i t y ,  i n  a c c o r d a n c e  w i t h  t he  c u r v e  of 

F ig .  1. T h e  q u a n t i t y  p .  w a s  a s s u m e d  to  b e  0 . 6 .  
T h e  f a c t  t h a t  t he  p l o t s  of  c~ v e r s u s  P0 s h o w  a m a x i -  

m u m  a g r e e s  w i t h  t h e  e x p e r i m e n t s .  I t  i s  w e l l  e s t a b -  

l i s h e d  [1, 7, 19] t h a t  the  i n i t i a l  i n c r e a s e  in t h e  f l u c -  
t u a t i o n  v e l o c i t y  w i t h  i n c r e a s i n g  u ~ i s  r e p l a c e d  b y  a 

r e d u c t i o n  u ~ h a s  r e a c h e d  a c r i t i c a l  v a l u e .  
If  we e q u a t e  E to W, we o b t a i n  t h e  e q u a t i o n  f o r  t he  

e f f e c t i v e  t e m p e r a t u r e  of the  f l u i d i z e d  p a r t i c l e s :  

W02 

%(_5%~'"'( po'%*'/' )'/'. ~'~ 4 ,~,o/  ~ p ~ / ,  (4.7) 

I t  i s  r e a d i l y  s e e n  t h a t  t he  m e a n  s q u a r e  v e l o c i t y  of 
s m a l l - s c a i e  m o t i o n s  i s  a l w a y s  c o n s i d e r a b l y  l e s s  t h a n  

w0, and  w~ = ( 0 / m )  1 / ~ / w  0 < 0.4.  T h i s  i s  in  a g r e e -  
m e n t  w i t h  a l l  t h e  e x p e r i m e n t s  c i t e d  a b o v e .  F o r  e x a m -  

p i e ,  a c c o r d i n g  to [8] t he  l a t e r a I  v e l o c i t y  w ~ i s  l o w e r  b y  

a f a c t o r  of  3 / 4  t h a n  t he  l o n g i t u d i n a l  v e l o c i t y  w0 + w ~ 
F r o m  E q s .  ( 1 . 1 )  and  ( 4 . 1 )  we h a v e  

v ~ (d2 --  dD g 
Uo - -  6np, oaK (po, X) " 

2J T h e  v e l o c i t y  w ~ c a n  r e a d i l y  b e  d e t e r m i n e d  f r o m  E q s .  
�9 ( 4 . 7 )  and  ( 4 . 8 ) .  T h e  c h a r a c t e r i s t i c  v e l o c i t y  w .  i s  p r o -  

2 p o r t i o n M  to t h e  c u b e  r o o t  of  t h e  k i n e m a t i c  v i s c o s i t y  of 
t h e  l i q u i d ,  and  i s  in  g e n e r a l  i n d e p e n d e n t  of  t h e  t ype  of 

f l u i d i z e d  p a r t i c l e s .  T h e  p a r a m e t e r s  of t he  p a r t i c l e s  
a f f e c t  t he  i n t e n s i t y  of t he  l o c a l  m o t i o n s  on ly  t h r o u g h  
t he  d i m e n s i o n l e s s  p a r a m e t e r s  X and  x .  U n d e r  t h e s e  

c o n d i t i o n s  w ~ ~ w0 ~ x l / 3 ,  ~r >> 1 and ,  m o r e o v e r ,  

w ~ ~ wo ~ X "/' ~ A "/', 

X ~ Xo .~. eo -~'sTa (A . ~  Ao) 

w ~ ~ X v"  A '/" w o N X '/' N A V', ( x  >~ Xo). 

These relations are satisfactorily confirmed by experiments. For 
example, Borodulya and Tamarin [21] have investigated the effective 
ithermal conductivity of a fluidized bed in the horizontal (a t ~ w ~ and 
vertical (a2 ~ w0) directions, and have obtained empirical formulas 
of the form ai ~ A 5i, where the exponents ~i decrease with decreas- 
ing A. According to their estimates 51 ~ 0.27 52 ~ 0.43 in a wide 

�9 ' 4 4 range of Archimedes numbers (up to 5.10 ). For A > 5.10 they found 
that 0 < 51 < 0.12, 0 < 62 < 0.144 which is in agreement with the 
above asymptotic estimates. In the case which we have considered, 
when the formula given by gq. (4. 4) is valid, the quantities w 0 and 
w ~ increase monotonically with A even for A ~ A 0. It is readily 
shown, however, that, in the second limiting case (stationary filtra- 
tion) both these quantities have a maximum and a minimum as func- 
tions of A (their dependence on X is illustrated by Fig. 6). This 
feature of the function w0(A ) and w~ is also in agreement with the 
experimental results. Bondareva* has observed experimentally the 
fluctuation-velocity maximum in the region of small A (A ~ A 0 ), 
and explained it correctly by the change in the hydrodynamic state of 
the flow past the particles in a fluidized bed as A increases. 

T h e  e x p r e s s i o n s  g i v e n  b y  E q s .  ( 4 . 7 )  and  ( 4 . 8 )  c o m -  

p l e t e I y  d e t e r m i n e  t he  c o e f f i c i e n t s  in  Eq.  ( 2 . 4 )  and  the  
i s o t r o p i e  p r e s s u r e  of the  s o l i d  p h a s e .  I t  c a n  b e  s h o w n  

[we a r e  a s s u m i n g ,  f o r  s i m p l i c i t y ,  t h a t  3 / - 0 in  Eq.  

(4.7)1 t h a t  

~l ~ t5•  H (P0, X) X ~ 0 ,  

H =  p0Wo (y-1 + 0.8 + 0.76Y) , 

~ t 5 •  Z(p0,  X) X 2~0, Z =  P0WoY, 

D ~ 6 h ( p o ,  X )  X % o ,  A =  W o Y  - 1 ,  

7 m 3 ' 9 "  10 - ~ ( •  F ( p 0 , X )  ( g / @ ,  

F ~ poWo (y-1 + t .2  + 0,75Y), 

p ~ t .9  (x - -  t)V, H (P0, X )  X"/, (d~w,~) ,  

H --~ O0(l  + Y )  Wo ~ . ( 4 . 9 )  

We n o t e  t h a t  t he  c o e f f i c i e n t s  in  Eq .  ( 4 . 9 )  d e s c r i b e  

o n l y  t he  i s o t r o p i c  c o m p o n e n t s  in  the  r e s u l t a n t  t r a n s -  

p o r t  of  t he  v a r i o u s  q u a n t i t i e s ,  w h i c h  a r e  c o n n e c t e d  

on ly  w i t h  t h e  s m a l l - s c a l e  m o t i o n  of t h e  p a r t i c l e s .  T h e  

c o r r e s p o n d i n g  a n i s o t r o p i c  c o m p o n e n t s  w h i c h  a p p e a r  

a s  a r e s u l t  of l a r g e - s c a l e  f l u c t u a t i o n a l  m o t i o n  c a n ,  in  

p r i n c i p l e ,  b e  t a k e n  i n to  a c c o u n t  b y  a n a l o g y  w i t h  t he  

S u b s t i t u t i n g  t h i s  i n to  Eq.  ( 4 . 6 ) ,  and  u s i n g  Eq.  ( 4 . 3 )  

and  z = d 2 / d l ,  we  o b t a i n  

Wo ~ 3 . 8  (• - -  1)'/, Wo (P0, X) X'/, w. ,  

W 0 = W .  K -1, w.  = (g%)V3. ( 4 . 8 )  

*A.  K.  B o n d a r e v a ,  M o t i o n  of  P a r t i c l e s  and  H e a t  

T r a n s f e r  in  a F l u i d i z e d  B e d .  C a n d i d a t e ' s  D i s s e r t a t i o n ,  

L e n i n g r a d ,  1958.  S o m e  of the  r e s u l t s  g i v e n  i n  t h i s  

w o r k ,  e s p e c i a l l y  t h o s e  r e f e r r i n g  to f l u c t u a t i o n a l  m o -  

t i o n s  of  t h e  p a r t i c l e s  in  t he  bed ,  c a n  b e  f o u n d  in  [1]. 
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theory of tu rbu len t  mix ing  by int roducing,  for example,  
ce r t a in  analogs of the Reynolds s t r e s s e s ,  the effective 
d i sp l acemen t  path 1 by analogy with the Prand t l  pa-  
r a m e t e r ,  or  the p a r a m e t e r  in t roduced in [7] and equa l  
to ~w0 T. However,  this  fo rms  an independent  p rob lem.  
It is c l ea r  that an anisot ropic  t e r m  wil l  also appear  
in the express ion  for the total p r e s s u r e  of the solid 
phase.  

The kinematic viscosity 7? has not been corrected for effects due to 
friction between the particles during their relative motion. The vis- 
cosity ~' due to this mechanism of energy dissipation becomes very 
high when P0 "~ P*, but falls rapidly with decreasing Po, becoming 
very small for P0 quite close to p,. It is clear that in the region where 
77' is small, the dependence of the total momentum transfer along the 
vertical, and consequently of the "longitudinal" viscosity, on ~0 is 
of the form shown by Fig. 7. Similar curves were found for the local 
velocity as a function of the rate of filtration in [P~2]. 

F igure  8 shows the quant i t ies  W0, H, Z, A, F, II, 
mul t ip l ied  by 100 as funct ions of p• for p ,  = 0.6 
and X = 10 (curves  1 -6 ,  respec t ive ly) .  These  funct ions  
do not cont rad ic t  the data given in the l i t e r a t u r e .  

The author wishes  to thank G. I. Ba renb la t t  and the 
pa r t i c ipan t s  of his s e m i n a r  for useful  d i s cus s ions .  
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